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RESUMEN 

 

El presente trabajo de investigación tiene como finalidad analizar el comportamiento dinámico de 

un modelo epidemiológico del tipo SIS (Susceptible-Infectado-Susceptible), cuya incorporación 

particular de la incidencia no lineal de la forma 𝛽𝑆2𝐼  . Esta formulación busca representar de 

manera más realista los escenarios donde el número de contactos entre personas susceptibles incide 

de manera significativa en la propagación de una enfermedad. Se parte de un sistema de ecuaciones 

diferenciales ordinarias que describe la evolución temporal de la población susceptible e infectada, 

sometida a nacimientos, muertes naturales, pérdida de inmunidad y transmisión de la infección. 

A través del análisis cualitativo, se determinaron condiciones de existencia, unicidad, positividad y 

acotamiento de las soluciones del sistema. Por otro lado, se encontraron los puntos de equilibrio del 

modelo y se analizó su estabilidad local mediante procesos de linealización y evaluación del 

Jacobiano. En conclusión, estos resultados obtenidos permiten fortalecer la comprensión de 

dinámicas epidémicas complejas y ofrecen una base teórica útil para diseñar estrategias de control 

sanitario más efectivas. 

 

Palabras clave: Modelo SIS, incidencia cuadrática, estabilidad, ecuaciones diferenciales, número 

básico de reproducción, epidemiología matemática. 
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ABSTRACT 

 

 

The purpose of this research work is to analyze the dynamic behavior of an epidemiological model 

of the SIS (Susceptible-Infected-Susceptible) type, whose particular incorporation of the linear 

incidence of the form  𝛽𝑆2𝐼 . This formulation seeks to represent in a more realistic way the 

scenarios where the number of contacts between susceptible people has a significant impact on the 

spread of an illness. It is part of a system of ordinary differential estimates that describe the temporal 

evolution of susceptible and infected populations, subject to births, natural deaths, loss of immunity 

and transmission of infection. 

Through qualitative analysis, conditions of existence, unicity, positivity and acceptance of system 

solutions will be determined. On the other hand, the model's equilibrium points will be found and 

its local stability will be analyzed through Jacobian linearization and evaluation processes. In 

conclusion, these results obtained allow us to strengthen the understanding of complex epidemic 

dynamics and provide a useful theoretical basis for designing more effective health control 

strategies. 

 

 

 

 

Palabras clave: Modelo SIS, incidencia cuadrática, estabilidad, ecuaciones diferenciales, número 

básico de reproducción, epidemiología matemática. 
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INTRODUCCIÓN 

En los últimos años, el estudio de modelos matemáticos aplicados a la epidemiología ha cobrado 

una importancia crucial, especialmente frente a los retos planteados por la rápida propagación de 

enfermedades infecciosas. Estos modelos permiten no solo representar el comportamiento 

dinámico de las epidemias, sino también anticipar escenarios, evaluar estrategias de control y 

contribuir a la toma de decisiones en políticas de salud pública. Entre los modelos más 

representativos se encuentra el SIS (Susceptible-Infectado-Susceptible), el cual describe 

enfermedades que no confieren inmunidad permanente tras la recuperación, como ocurre con 

algunas infecciones bacterianas y virales recurrentes. 

Tradicionalmente, los modelos SIS emplean una tasa de incidencia lineal, donde la probabilidad 

de contagio depende directamente del número de susceptibles e infectados. No obstante, esta 

formulación puede resultar limitada cuando se analizan contextos de alta densidad poblacional o 

patrones de contacto más complejos entre individuos. Por consiguiente, surge la necesidad de 

explorar variantes del modelo clásico que incorporen dinámicas más realistas. En este marco, el 

presente trabajo se enfoca en el análisis cualitativo de un modelo SIS no lineal, cuya tasa de 

incidencia adopta la forma 𝛽𝑆2𝐼 , introduciendo una componente cuadrática que refleja de manera 

más adecuada situaciones donde la interacción entre susceptibles es más intensa o masiva. 

Esta investigación tiene como propósito principal analizar la estabilidad de los puntos de 

equilibrio de dicho modelo, a través del uso de herramientas matemáticas como las ecuaciones 

diferenciales ordinarias (EDO) y el análisis del Jacobiano, identificando las condiciones bajo las 

cuales la enfermedad tiende a desaparecer o, por el contrario, se mantiene de forma endémica en la 

población.  
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I. PROBLEMA DE INVESTIGACIÓN 

 

1.1. Planteamiento y fundamentación del problema de investigación 

A lo largo de la historia, los modelos epidemiológicos han sido herramientas fundamentales 

para describir, comprender y anticipar la dinámica de propagación de enfermedades infecciosas 

en poblaciones humanas. Desde los trabajos pioneros de Kermack y McKendrick (1997), se 

han desarrollado estructuras matemáticas que permiten simular y analizar la evolución de 

epidemias en comunidades de gran escala. Entre los modelos clásicos más representativos se 

encuentran el SIR (Susceptibles-Infectados-Recuperados) y el SIS (Susceptibles-Infectados-

Susceptibles), los cuales ofrecen una visión simplificada pero poderosa del proceso de contagio. 

Inicialmente, estos modelos asumían poblaciones homogéneamente mezcladas, donde 

cualquier individuo tenía la misma probabilidad de interactuar con otro, sin considerar 

estructuras de contacto más realistas. Posteriormente, Lajmanovich y Yorke (1976) 

introdujeron un enfoque más complejo al proponer un modelo SIS sobre redes, el cual fue 

aplicado al estudio de la transmisión de la gonorrea, considerando conexiones sociales descritas 

mediante grafos, lo que permitió representar mejor las interacciones heterogéneas entre 

individuos. 

En el contexto actual, marcado por la aparición y reaparición de enfermedades transmisibles, el 

estudio y perfeccionamiento de estos modelos se vuelve aún más pertinente. Como sostiene 

Martins de Assis (2020), las enfermedades infecciosas continúan siendo un reto significativo 

para la salud pública global, lo que exige herramientas más refinadas que permitan entender no 

solo cómo se propagan las enfermedades, sino también su duración, impacto regional, tasas de 

curación y mecanismos de control. 

El trabajo desarrollado se enfoca en el estudio de un modelo SIS no lineal, caracterizado por 

una función de incidencia de tipo cuadrática, específicamente de la forma 𝛽𝑆2𝐼. Este tipo de 

incidencia representa una variación del modelo clásico, al introducir una mayor sensibilidad a 

los niveles de susceptibilidad. Esta formulación corresponde al caso particular de una tasa de 
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incidencia generalizada 𝜆𝑆𝑃𝐼𝑞, con p=2 y q=1, lo que permite modelar escenarios en los que la 

propagación depende de interacciones más intensas entre susceptibles e infectados. El objetivo 

principal de este trabajo es estudiar la estabilidad del modelo epidemiológico SIS no lineal 

propuesto, a través de un análisis cualitativo que permita identificar las condiciones en las que 

la enfermedad puede persistir o desaparecer dentro de una población. 

El sistema de ecuaciones diferenciales ordinarias que rige el comportamiento del modelo está 

dado por: 

(1∗) {

𝑑𝑆

𝑑𝑡
= 𝜇𝑇 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆         ⋯ ( 1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼                     ⋯ ( 2 )

 

Donde: 

𝑺: 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑜𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑠 

𝑰: 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑜𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑎𝑑𝑜𝑠 𝑒𝑛 𝑒𝑙 𝑡𝑖𝑒𝑚𝑝𝑜 𝑡. 

𝝁𝑻:Tasa de nacimiento 

𝜷: Tasa de trasmisión (número promedio de contactos adecuados para la infección de una 

persona por unidad de tiempo). 

𝜶: Tasa de muerte natural, 𝜸: Tasa de pérdida de inmunidad. 

𝟏

𝜸
: Período promedio de inmunidad temporal 

Este modelo permite examinar, desde una perspectiva matemática y epidemiológica, cómo el 

comportamiento de la enfermedad se ve afectado por variaciones en los parámetros del sistema. 

A partir de este enfoque, se pretende determinar los puntos de equilibrio del modelo y estudiar 

su estabilidad mediante técnicas cualitativas y análisis de la matriz Jacobiana, complementando 

el estudio con simulaciones numéricas que apoyen y visualicen los resultados obtenidos 

teóricamente. 
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1.2. Antecedentes de la investigación 

 

Investigaciones nacionales 

Huamán y Rodríguez (2021), en su investigación “Análisis de estabilidad de un modelo SIS con 

dinámica vital aplicado a enfermedades recurrentes” realizada en zonas rurales de Perú. Su 

objetivo fue aplicar un modelo SIS con dinámica vital a enfermedades de reaparición frecuente 

en zonas rurales del país. Propusieron una incidencia no lineal generalizada de la forma 𝛽𝑆𝑝𝐼𝑞, 

analizando los casos específicos en los cuales 𝑝 = 2 y 𝑞 = 1. Concluyeron que el número básico 

de reproducción constituye el principal umbral que define la permanencia o extinción de la 

enfermedad. Además, identificaron que incrementos en la tasa de transmisión pueden generar 

cambios sensibles en la estabilidad del sistema. Por consiguiente, se asume la importancia de del 

estudio al considerar incidencias no lineales para representar adecuadamente la transmisión en 

comunidades con alta interacción social. 

Por su parte, Salazar (2019), en una investigación “Modelamiento matemático de enfermedades 

infecciosas mediante sistemas tipo SIS con parámetros variables en el tiempo”, realizada en 

Lima. Su objetivo fue analizar enfermedades recurrentes en poblaciones urbanas, donde 

incorporó una incidencia no lineal y examinó cómo la variabilidad temporal en la tasa de contagio 

afecta la estabilidad de la enfermedad. Aplicó el jacobiano y el análisis de los autovalores, donde 

determinó que pequeñas modificaciones en dichos parámetros pueden modificar el 

comportamiento del equilibrio libre de infección. Esta contribución resulta particularmente 

relevante, pues demuestra que incluso modelos SIS relativamente simples pueden presentar 

dinámicas complejas cuando se introducen no linealidades en la incidencia. 

Asimismo, Torres (2018), su objetivo fue analizar un modelo SIS orientado a la propagación de 

infecciones de corta duración, mediante EDO el cual fue desarrollado en la Pontificia 

Universidad Católica del Perú. Asimismo, empleo la linealización y utilizo los puntos críticos 

para estudiar la evolución del sistema. En su resultado destaca la inclusión de funciones de 



12  

incidencia no lineal permite capturar de manera más realista comportamientos epidemiológicos 

que no pueden describirse adecuadamente bajo una incidencia estrictamente bilineal.  

Finalmente, Pino (2017), en su estudio titulado “Análisis y Simulación Numérica de un Modelo 

Matemático SI con Retardo Discreto para las Enfermedades de Transmisión Sexual”, 

desarrollado en la ciudad de Lima, Perú, tuvo como finalidad examinar de manera cualitativa el 

comportamiento de los modelos matemáticos epidemiológicos del tipo SI. Su enfoque consideró 

tanto el caso de contagio inmediato, representado a través de ecuaciones diferenciales ordinarias. 

Asimismo, también estudio cuando un individuo recién expuesto aún no se convierte en un 

agente infeccioso, lo cual fue abordado mediante ecuaciones diferenciales con retardo. El análisis 

cualitativo fue complementado con simulaciones numéricas, permitiendo interpretar mejor la 

dinámica del contagio. Al finalizar, se concluyó que el estudio matemático de estos modelos 

constituye una herramienta clave para comprender a fondo la propagación de enfermedades y 

apoyar la toma de decisiones en el campo de la salud pública. 

 

Investigaciones internacionales 

Dos Santos y Cordero (2020) en su trabajo de investigación “Modelo Epidemiológico para a 

Malária nas Cidades de Manaus e Lábrea” realizado en Manaus – Brasil, su objetivo fue el 

estudio de un modelo epidemiológico alternativa para la malaria en las ciudades Manaus y 

Lábrea. Usaron un modelo matemático SIS (susceptible – infectado), describiendo la malaria 

entre los años 2009 y 2014. Cuya formulación del modelo fue la siguiente: 

{

𝑑𝑆

𝑑𝑡
= −𝛼𝑆𝐼 + 𝛽𝐼

𝑑𝐼

𝑑𝑡
= 𝛼𝑆𝐼 − 𝛽𝐼

 

Donde: 

𝑆: 𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 

𝐼: 𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝐼𝑛𝑓𝑒𝑐𝑡𝑎𝑑𝑎 
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𝛼: 𝑇𝑎𝑠𝑎 𝑑𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖ó𝑛 

𝛽: 𝑇𝑎𝑠𝑎 𝑑𝑒 𝑟𝑒𝑐𝑢𝑝𝑒𝑟𝑎𝑐𝑖ó𝑛 

𝐼 + 𝑆 = 𝑁      𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑡𝑜𝑡𝑎𝑙. 

Cuya conclusión fue que describieron la dinámica de la malaria en las ciudades de Manaus e 

Lábrea. Con la obtención de los datos de casos confirmados de la malaria pudieron determinar 

los parámetros 𝛼 𝑦 𝛽. También determinaron los puntos de equilibrio y suprimieron las 

ecuaciones de la dinámica de los mosquitos, para que el modelo sea lo más simple. 

Asimismo, Aguadero (2020) en su trabajo de grado titulado “Estudio matemáticos de modelos 

epidemiológicos” analizó el modelo SIS, cuyo sistema de ecuaciones diferenciales es el 

siguiente: 

{
𝑆̇ = 𝛾𝑁 − 𝛽

𝑆𝐼

𝑁
− 𝑝𝛾𝐼 + 𝛿𝐼 − 𝜎𝑆,

𝐼̇ = 𝛽
𝑆𝐼

𝑁
− (𝛿 + 𝜎 + 𝜀 − 𝑝𝛾)𝐼

,            (∗̂) 

Donde: 

𝑆: 𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒         𝐼: 𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝐼𝑛𝑓𝑒𝑐𝑡𝑎𝑑𝑎;      𝐼 + 𝑆 = 𝑁      𝑃𝑜𝑏𝑙𝑎𝑐𝑖ó𝑛 𝑡𝑜𝑡𝑎𝑙 

𝛿: 𝑇𝑎𝑠𝑎 𝑑𝑒 𝑟𝑒𝑐𝑢𝑝𝑒𝑟𝑎𝑑𝑜𝑠 

𝜎 𝑦 𝜀: Tasa de muerte natural y tasa de muerte asociada a la enfermedad. 

𝑝: fracción de recién nacidos que quedan infectados al nacer. 

Cuyo resultado, fue que determino los puntos de equilibrio del sistema. Asimismo, encontró el 

número reproducción básico (𝑅0), es decir 

{

𝐸0 = (
𝛾

𝜎
.𝑁, 0)

𝐸∗ = (
𝛾

𝜎
.
𝑁

𝑅0
,
𝛾. 𝑁

𝜎 + 𝜀
. (1 −

1

𝑅0
)
,         𝑅0 =

𝛽𝛾

𝜎(𝛿 + 𝜎 + 𝜀 − 𝑝𝛾)
 

Además, analizó la estabilidad en el punto de equilibrio 𝐸∗ del sistema (∗̂), demostrando que es 

globalmente estable. 
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Alpízar (2016), en su investigación titulada “Análisis de un modelo SIS para el estudio de la 

dinámica de propagación de la enfermedad al aplicar medidas de control”, se propuso examinar 

un modelo SIS discreto de tipo metapoblacional con el fin de identificar aquellos parámetros que 

pudieran ser intervenidos y que simbolizan la implementación de estrategias de control. El 

propósito central fue comprender cómo dichas medidas inciden en el comportamiento de la 

propagación de la enfermedad. Una vez determinados estos parámetros clave, se procedió a 

realizar simulaciones que reproducen posibles escenarios reales, permitiendo así explorar de 

forma más tangible los efectos de las decisiones en contextos diversos. 

El modelo que planteo fue el siguiente: 

𝑆𝑘+1 = 𝛾𝐺𝑘𝑆𝑘 + 𝛾(1 − 𝜎𝜏)𝐼𝑘 

𝐼𝑘+1 = 𝛾(1 − 𝐺𝑘)𝑆𝑘 + 𝛾𝜎𝜏𝐼𝑘 

Donde  

𝐺𝑘 = 𝑒𝑥𝑝 (
−𝛼𝐼𝑘
𝑁𝑘

) 

El modelo planteado por el autor se basa en un sistema discreto SIS, donde se incorpora una 

función probabilística 𝐺𝑘 , que representa la probabilidad de que un individuo permanezca 

susceptible entre dos momentos consecutivos. Este valor depende de la proporción de infectados 

y una constante que refleja la influencia de la prevalencia en la transmisión. Se asume que la 

población total permanece constante, sin considerar nacimientos ni muertes. A través de este 

enfoque, se concluye que las simulaciones matemáticas permiten obtener valiosa información 

sobre la efectividad de las medidas de control, lo que resulta fundamental para que los 

profesionales de la salud diseñen estrategias oportunas y eficaces en el ámbito de la salud pública. 

Francois , Dronnier, y André ( 2020) en su investigación “Un modelo SIS de dimensiones 

infinitas” su objetivo fue presentar un modelo SIS determinista de dimensión infinita que tiene 
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en cuenta la heterogeneidad de las infecciones y la red social entre una gran población. También 

estudiaron el comportamiento a largo plazo de la dinámica. Concluyendo la identificación del 

número de reproducción básico 𝑅0 que determina si existe una endémica estable estado 

estacionario (caso supercrítico: 𝑅0> 1) o si el único equilibrio es libre de enfermedad (crítico y 

caso subcrítico: 𝑅0 ≤ 1).  Como aplicación también demostraron que los llamados mecanismos 

de vacunación  "con fugas" y "todo o nada" tienen el mismo efecto sobre 𝑅0.  

 

Gao, Wang, y Liu ( 2019) en su investigación “Dinámica de una epidemia estocástica de modelo 

SIS con tasas de incidencia no lineales”. La finalidad de este estudio es hacer contribuciones para 

analizar la dinámica de los modelos epidémicos del SIS con tasa de incidencia no lineal. Primero, 

expandieron un modelo de epidemia determinista del SIS al introducir la mortalidad 

adicional. Para el sistema modificado, analizando la estabilidad de los equilibrios, definieron un 

umbral que determina la extinción y permanencia de la enfermedad epidémica. En segundo lugar, 

establecieron un sistema estocástico introduciendo la perturbación del ruido blanco en el sistema 

determinista. Para el sistema estocástico, definieron un nuevo umbral asociado con su contraparte 

determinista y analizamos la dinámica del sistema con base en el nuevo umbral utilizando la 

teoría de ecuaciones diferenciales estocásticas. Concluyendo que existe una diferencia 

significativa de umbral del sistema estocástico de su contraparte determinista.  Sin embargo, en 

el modelo actual, la tasa de incidencia no lineal toma la forma 𝛽𝑆𝑃(𝑡)𝐼(𝑡) , que es un caso 

especial de la tasa de incidencia no lineal con 𝛽𝑆𝑃(𝑡)𝐼𝑞(𝑡)  , 𝑞 = 1, 𝑝 ∈ ℕ para el caso más 

general 𝑞, 𝑝 ∈ ℝ+, no proporcionamos un método de análisis eficaz en la actualidad.   
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1.3. Formulación del problema de investigación 

 

1.3.1. Problema general 

 
¿Bajo qué condiciones un modelo SIS no lineal, expresado mediante un sistema de ecuaciones 

diferenciales ordinarias, asegure la estabilidad del Sistema (1*)? 

1.3.2. Problemas específicos 

 

1. ¿Bajo qué condiciones se garantiza la existencia y unicidad de las soluciones del modelo 

SIS no lineal, asegurando un comportamiento matemáticamente bien definido? 

2. ¿Cómo se puede verificar que las soluciones del modelo SIS no lineal se mantengan 

positivas y acotadas en el tiempo? 

3. ¿Cuáles son los puntos de equilibrio del sistema y qué interpretación epidemiológica puede 

asignarse a cada uno en relación con la desaparición o persistencia de la enfermedad? 

4. ¿De qué manera puede analizarse la estabilidad local de los puntos de equilibrio mediante 

la linealización del sistema? 

5. ¿En qué medida el número básico de reproducción R₀ influye en el comportamiento del 

modelo epidemiológico, y de qué forma puede interpretarse como un modelo decisivo para 

prever si la enfermedad se extingue o persiste en la población? 

 

1.4. Delimitación del estudio 

 

La investigación solo se limita al análisis cualitativo de un modelo SIS con incidencia no 

lineal 𝛽𝑆2𝐼. Se analiza la parte teórica de la estabilidad de los puntos de equilibrio del sistema 

dentro de un marco determinista y continuo, no hay variaciones temporales en parámetros, ni 

interacción con otras poblaciones o estructuras epidemiológicas más complejas. 
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1.5. Justificación e importancia de la investigación 

 

Este trabajo de investigación se justifica porque se hará un análisis cualitativo profundo del 

modelo SIS de la forma (1∗), cuya incidencia está dada por una expresión cuadrática de la 

forma 𝛽𝑆2𝐼. A partir de este enfoque, se pretende determinar los puntos de equilibrio del 

modelo y estudiar su estabilidad mediante técnicas cualitativas y análisis de la matriz Jacobiana. 

 En particular, el modelo SIS con incidencia no lineal nos permiten analizar de una manera más 

realista dinámicas en las que los individuos infectados pueden volver a ser susceptibles, en 

situaciones que se presenta en numerosas enfermedades recurrentes en epidemiologia el cual 

nos representa una herramienta crucial para comprender, predecir y controlar la propagación de 

enfermedades infecciosas dentro de una población 

Esta investigación de manera practica cobra relevancia porque permite identificar parámetros 

críticos del sistema como la tasa de transmisión, la tasa de recuperación o la pérdida de 

inmunidad y entender cómo inciden en la estabilidad de los equilibrios del modelo. Estos 

análisis teóricos aportan información valiosa para el diseño de estrategias de intervención, tales 

como campañas de prevención, aislamiento o tratamiento, que puedan aplicarse de forma 

oportuna en contextos reales. 

 

1.6. Objetivos de la investigación 

1.6.1. Objetivo general 

 
Determinar las condiciones bajo las cuales un modelo SIS no lineal, expresado mediante un sistema de 

ecuaciones diferenciales ordinarias, asegure la estabilidad del Sistema (1*). 

 

1.6.2. Objetivos específicos 

  

1. Demostrar la existencia y unicidad de las soluciones del modelo, garantizando que el 

sistema de ecuaciones diferenciales tenga un comportamiento bien definido. 
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2. Verificar que las soluciones del modelo SIS no lineal se mantengan positivas y acotadas en 

el tiempo. 

3. Determinar los puntos de equilibrio del sistema, con su respectiva interpretación 

epidemiológica, para identificar los estados de desaparición o persistencia de la 

enfermedad. 

4. Estudiar el comportamiento local de los puntos de equilibrio del modelo mediante la 

linealización del sistema, con el fin de determinar su estabilidad. 

5. Establecer la importancia del número básico de reproducción 𝑅0 en la dinámica del 

modelo, definiendo su papel como umbral que determina la extinción o permanencia de la 

enfermedad. 
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II. MARCO TEÓRICO 

 

2.1. Fundamentos teóricos de la investigación 

 

El desarrollo de modelos matemáticos aplicados a fenómenos epidemiológicos requiere un 

marco teórico sólido, basado principalmente en las ecuaciones diferenciales ordinarias (EDO), 

herramienta fundamental en la modelación de sistemas dinámicos. Estas ecuaciones permiten 

describir cómo evolucionan las variables del sistema en el tiempo, a partir de sus tasas de cambio, 

y son ampliamente utilizadas para representar procesos naturales, físicos, biológicos y sociales. 

En el contexto de las enfermedades infecciosas, las EDO sirven para describir cómo evolucionan 

en el tiempo las poblaciones de individuos susceptibles e infectadas, capturando el 

comportamiento temporal de la propagación de una enfermedad bajo distintos supuestos. 

Específicamente, los modelos tipo SIS (Susceptible-Infectado-Susceptible) emplean sistemas de 

EDO para representar situaciones donde los individuos, tras infectarse y recuperarse, no 

desarrollan inmunidad permanente y regresan al estado susceptible. 

Dentro del análisis de EDO, uno de los elementos clave para esta investigación es el análisis de 

estabilidad de los puntos de equilibrio. Entender si un sistema evoluciona hacia un estado estable 

o si pequeñas perturbaciones pueden alterar su comportamiento a largo plazo resulta crucial para 

anticipar la persistencia o erradicación de una enfermedad. Este análisis se realiza comúnmente 

mediante técnicas como la linealización del sistema alrededor de los puntos críticos, el cálculo 

del jacobiano y la evaluación de los autovalores asociados, los cuales determinan la naturaleza 

del equilibrio. 

Otro concepto clave es el de existencia y unicidad de soluciones, garantizado bajo ciertas 

condiciones, como la continuidad de la función y la propiedad de Lipschitz. Estos criterios 

aseguran que el sistema modelado tenga una solución bien definida para condiciones iniciales 

dadas, lo cual es indispensable para interpretar y validar los resultados del modelo. 
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Además, en modelos epidemiológicos como el SIS no lineal que se aborda en esta tesis, es 

esencial verificar propiedades como la positividad y acotamiento de soluciones, lo cual garantiza 

que las soluciones del modelo se mantengan en rangos biológicamente aceptables. 

En esta investigación se trabajará con un modelo SIS no lineal cuya tasa de incidencia adopta 

una forma cuadrática, es decir, βS²I. Esta forma representa una generalización del modelo 

clásico, donde la incidencia es simplemente proporcional al producto SI. La inclusión del 

término S² refleja situaciones donde el riesgo de contagio aumenta más rápidamente con la 

cantidad de susceptibles. 

Para sustentar teóricamente este análisis, se recurrirá a autores clásicos y contemporáneos como 

Benazic (2007), Monzón (2003), Plaat (1974) y López (2006), quienes abordan con profundidad 

las bases matemáticas necesarias para el estudio de sistemas dinámicos, así como técnicas de 

análisis de estabilidad aplicadas a modelos no lineales. 

En resumen, este capítulo establece los fundamentos necesarios para aplicar con rigor 

matemático las herramientas de las EDO al análisis de un modelo epidemiológico SIS no lineal, 

y sentará las bases para las secciones posteriores donde se desarrollarán los resultados analíticos 

del presente trabajo. 

 

2.2. Bases teóricas 

 

Problema de Valor inicial 

Definición 2.1.  Sea 𝐹:𝑈 → ℝ𝑛 una función y 𝑈 ⊆ ℝ𝑛 abierto 

A. Una ecuación diferencial ordinaria (EDO) de primer orden relacionada con una función F, se 

expresa generalmente en la forma: 

𝑤′ = 𝐹(𝑧)          (2.1)  
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B. Se denomina solución de la ecuación diferencial (2.1) a una  función diferenciable 𝜑: 𝐼 → ℝ 

definida en un intervalo I, tal que: 

i) 𝜑(𝑡) ∈ 𝑈, ∀𝑡 ∈ 𝐼 

ii) 𝜑′(𝑡) = 𝐹(𝜑(𝑡)), ∀𝑡 ∈ 𝐼 

Observación 1. Si 𝐹:𝑈 → ℝ𝑛 es continua, entonces toda solución 𝜑 de la ecuación (2.1) es de 

clase 𝐶1. 

Observación 2. Consideremos 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑛) , 𝜑(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)) entonces 

1. La EDO (2.1) tendrá la forma de un sistema de “n” ecuaciones diferenciales autónomas, 

como se presenta a continuación: 

{

𝑥′1(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡))

𝑥′1(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡))
⋮

𝑥′𝑛(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡))

      (2.2) 

2. Si 𝜑 es solución de la EDO (2.2), si y sólo si, 

i) (𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)) ∈ 𝑈, para todo 𝑡 ∈ 𝐼 

ii) 𝜑′(𝑡) = 𝐹(𝜑(𝑡)), satisface (1.2) para todo 𝑡 ∈ 𝐼 

Definición 2.2.  Sea 𝐹:𝑈 → ℝ𝑛 una función y 𝑈 ⊆ ℝ𝑛 abierto, 𝑧0 ∈ 𝑈  𝑦 𝑡0 ∈ ℝ 

1. El problema de valor inicial (PVI) o el problema de Cauchy asociado a 𝑓, se plantea de la 

siguiente manera: 

{
𝑧′(𝑡) = 𝐹(𝑧)

𝑧(𝑡0) = 𝑧0
    (2.3) 

2. Una solución del (PVI) (2.3) es una función 𝜑: 𝐼 → ℝ𝑛 diferenciable, donde 𝐼 ⊆ ℝ𝑛 es un 

intervalo, tal que 

i) 𝑡0 ∈ 𝐼 

ii) 𝜑(𝑡)  ∈ 𝑈, para  todo 𝑡 ∈ 𝐼 

iii) 𝜑′(𝑡) = 𝐹(𝜑(𝑡)), para todo 𝑡 ∈ 𝐼 
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iv) 𝜑(𝑡0) = 𝑧0 

Observación 3. Consideremos 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑛) , 𝜑(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)) entonces, 

1. Si 𝑤0 = (𝑥1
0, 𝑥2

0, ⋯ , 𝑥𝑛
0) ∈ ℝ𝑛 cuando 𝑡0=0, tenemos el PVI asociado a F 

 

{
 
 

 
 𝑥

′
1(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)),   𝑥1(0) = 𝑥1

0

𝑥′1(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)), 𝑥2(0) = 𝑥2
0 

⋮
𝑥′𝑛(𝑡) = 𝐹(𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)),   𝑥𝑛(0) = 𝑥𝑛

0

    (2.4) 

2. Una solución del PVI (2.4) es una función 𝜑: 𝐼 → ℝ𝑛 diferenciable en el intervalo 𝐼 ⊆ ℝ𝑛 

tal que cumple lo siguiente: 

i) 0 ∈ 𝐼, para todo 𝑡 ∈ 𝐼 

ii) 𝜑(𝑡)  ∈ 𝑈, para todo 𝑡 ∈ 𝐼 

iii) 𝜑′(𝑡) = 𝐹(𝜑(𝑡)), satisface (2.4) para todo 𝑡 ∈ 𝐼 

iv) 𝜑(0) = (𝑥1(0), 𝑥2(0),⋯ , 𝑥𝑛(0)) = (𝑥1
0, 𝑥2

0, ⋯ , 𝑥𝑛
0) 

Existencia y Unicidad 

Mencionaremos algunas notaciones previas a los resultados que presentaremos en este capítulo. 

Recordando algunas notaciones básicas topológicas que a continuación mencionamos: 

Bola abierta (𝑩𝒓(𝒛𝟎)) 

𝑩𝒓(𝒛𝟎) = {𝒛 ∈ ℝ
𝑛: ‖𝑧 − 𝒛𝟎‖ < 𝑟, 𝑟 > 0} 

Bola cerrada (𝑩𝒓[𝒛𝟎]) 

𝑩𝒓[𝒛𝟎] = {𝒛 ∈ ℝ
𝑛: ‖𝑧 − 𝒛𝟎‖ ≤ 𝑟, 𝑟 > 0} 

Del mismo modo, cuando trabajamos sobre la recta real, utilizaremos la siguiente notación: 

Intervalo abierto: 𝐵𝑟(𝑧0) = (𝑧0 − 𝑟, 𝑧0 + 𝑟) 

Intervalo cerrado: 𝐵𝑟[𝑧0] = [𝑧0 − 𝑟, 𝑧0 + 𝑟] 
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Definición 2.3.  Sea 𝐹: 𝑈 → ℝ𝑛 una función definida en un conjunto abierto 𝑈 ⊆ ℝ𝑛 abierto, se 

dice que 𝐹 es globalmente Lipschitziana o es Lipchitziana en 𝑈, si existe una constante L tal que 

𝑧1, 𝑧2 ∈ 𝑈 

‖𝐹(𝑧1) − 𝐹(𝑧2)‖ ≤ 𝐿‖𝑧1 − 𝑧2‖ 

A dicha constante L se le conoce como constante de Lipschitz de F en U. 

Definición 2.4.  Sea 𝐹: 𝑈 → ℝ𝑛 una función y 𝑈 ⊆ ℝ𝑛 abierto, se dice que 𝐹 es localmente 

Lipschitziana en 𝑈 si sólo si 𝑧0 ∈ 𝑈 existe 𝑎 > 0 tales que 𝐵𝑎(𝑧0) ⊆ 𝑈 y la restricción 

𝐹 ∖ 𝐵𝑎(𝑧0): 𝐵𝑎(𝑧0) → ℝ𝑛 

es Lipschitz en 𝐵𝑎(𝑧0). 

Observación 4. Sea 𝐹:𝑈 → ℝ𝑛 una función y 𝑈 ⊆ ℝ𝑛 abierto: 

𝐹 es globalmente Lipschitz entonces F es localmente Lipschitz entonces F es continua. 

Definición 2.5.  sea 𝑈 ∈ ℝ𝑛 abierto y 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑛) tal que 𝐹:𝑈 → ℝ𝑛 una función. 

Decimos que F es de clase 𝐶1 en 𝑈 si y sólo si, se verifican las siguientes condiciones 

i) ∀𝑧 ∈ 𝑈, y existen las derivadas parciales 
𝜕𝐹𝑖(𝑧)

𝜕𝑧𝑗
, ∀ 1 ≤ 𝑖,   𝑗 ≤ 𝑛 

ii) ∀ 1 ≤ 𝑖,   𝑗 ≤ 𝑛 las funciones 
𝜕𝐹𝑖

𝜕𝑧𝑗
: 𝑈 → ℝ𝑛 son continuas en 𝑈 y lo denotamos como: 

𝐽(𝑧) =
𝜕(𝐹1, 𝐹2, ⋯ , 𝐹𝑛)

𝜕(𝑧1, 𝑧2, ⋯ , 𝑧𝑛)
=

[
 
 
 
 
 
 
 
𝜕𝐹1(𝑧)

𝜕𝑧1

𝜕𝐹1(𝑧)

𝜕𝑧2
⋯

𝜕𝐹1(𝑧)

𝜕𝑧𝑛
 

𝜕𝐹2(𝑧)

𝜕𝑧1

𝜕𝐹2(𝑧)

𝜕𝑧2
⋯

𝜕𝐹2(𝑧)

𝜕𝑧𝑛
⋮       ⋮         ⋯ ⋮

𝜕𝐹𝑛(𝑧)

𝜕𝑧1

𝜕𝐹𝑛(𝑧)

𝜕𝑧2
  ⋯

𝜕𝐹𝑛(𝑧)

𝜕𝑧𝑛 ]
 
 
 
 
 
 
 

 

Esta matriz se le conoce como la Matriz Jacobiana de F. 

Proposición 2.1. (criterio de Lipschitz para funciones con derivadas acotadas) 
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Sea I un intervalo real y  𝑓: 𝐼 → ℝ una función continua en todo I y derivable en el interior de 

dicho intervalo. Si la derivada de 𝑓 se encuentra acotada en el interior de I, entonces 𝑓 es cumple 

la condición de Lipschitz en I. 

Demostración.  Ver (Maximenko, 2014, p.2) 

Proposición 2.2. sea 𝑈 ∈ ℝ𝑛 abierto y 𝐹 una función de clase 𝐶1 𝑒𝑛 𝑈. Entonces F es 

localmente Lipschitz en U. 

Prueba. Ver (Benazic, 2007, pp. 171-172) 

Lema 2.1. Sea 𝐹:ℝ𝑛+ → ℝ𝑛, 𝐹(𝑥) = (𝐹1(𝑥), 𝐹2(𝑥),⋯ , 𝐹𝑛(𝑥)) con 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) son 

continuas y existen 
𝜕𝐹𝑖

𝜕𝑧𝑗
 continuas en ℝ𝑛+ ∀𝑖, 𝑗 = 1,2,⋯𝑛. Entonces, F es localmente Lipschitz 

continua en ℝ𝑛+. 

Prueba. Ver (López, 2006) 

Teorema 2.1. Sea 𝐹:ℝ𝑛+ → ℝ𝑛   una función que cumple la condición de ser localmente 

Lipschitz continua para cada 𝑖 = 1,  2,⋯ , 𝑛 y además satisface 𝐹𝑖(𝑥) ≥ 0 siempre que  𝑥 ∈

ℝ+,   
𝑛 𝑥𝑖 = 0.  Entonces para cada 𝑥0 ∈ ℝ+   

𝑛 , existe una única solución de 𝑥′ = 𝐹(𝑥) con 

𝑥(0) = 𝑥0 en ℝ+   
𝑛  𝑦 está definida en algún intervalo (0, 𝑎] con 𝑎 ∈ (0;+∞]. Si 𝑎 <

+∞;  entonces se cumple que 

𝑠𝑢𝑝⏟
0≤𝑡≤𝑎

∑𝑥𝑖(𝑡) = ∞

𝑛

𝑖=1

 

Prueba. Ver (López, 2006) 

Proposición 2.3 (Gronwall´s lemma) 

Sean 𝑢, 𝑣: [𝑎, 𝑏] → ℝ𝑛 funciones continuas con 𝑣 ≥ 0 y sea 𝑐 ∈  ℝ. Si 
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𝑢(𝑡) ≤ 𝑐 + ∫ 𝑢(𝑠)𝑣(𝑠)𝑑𝑠
𝑡

𝑎

 

Para todo 𝑡 ∈ [𝑎, 𝑏], entonces 

𝑢(𝑡) ≤ 𝑐. 𝑒𝑥𝑝∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑎

 

Para todo 𝑡 ∈ [𝑎, 𝑏]. 

Prueba. Ver (Barreira & Vals, 2010) 

Lema 2.2 Sean  𝑓: 𝐼 ⊆ ℝ → ℝ   𝑦 𝑥0 ∈ 𝐼 tales que: 

0 ≤ 𝑓(𝑥) ≤ 𝐴 + 𝐵∫ 𝑓(𝑠)𝑑𝑠   ∀𝑥 ∈ 𝐼
𝑥

𝑥0

 

Con 𝐴 𝑦 𝐵 ≥ 0 constantes, entonces 

𝑓(𝑥) ≤ 𝐴𝑒𝐵(𝑥−𝑥0) 

Ecuaciones Diferenciales Ordinarias No Lineales  

Al utilizar la notación matricial, es posible expresar de manera más compacta y organizada un 

sistema de n ecuaciones diferenciales ordinarias no lineales. Esta representación resulta 

particularmente útil al incorporar los resultados teóricos previos, ya que permite trabajar de 

forma más estructurada con funciones elementales asociadas al sistema en estudio. 

𝑧(𝑡) = [

𝑧1(𝑡)

𝑧2(𝑡)
⋮

𝑧𝑛(𝑡)

]      𝑦  𝐹(𝑧) = [

𝑧1(𝑡)

𝑧2(𝑡)
⋮

𝑧𝑛(𝑡)

] 

Por consiguiente, el sistema (2.4) tendría la forma siguiente 

𝑧′ = 𝐹(𝑧) 

En consecuencia, es posible utilizar los resultados previamente establecidos. 
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La expresión general  de un sistema lineal autónomo compuesto por  n ecuaciones 

diferenciales ordinarias es la siguiente: 

{

𝑧1
′ = 𝑎11𝑧1 + 𝑎12𝑧2 +⋯+ 𝑎1𝑛𝑧𝑛 + 𝑏1
𝑧2
′ = 𝑎21𝑧1 + 𝑎22𝑧2 +⋯+ 𝑎2𝑛𝑧𝑛 + 𝑏2

     ⋮
𝑧𝑛
′ = 𝑎𝑛1𝑧1 + 𝑎𝑛2𝑧2 +⋯+ 𝑎𝑛𝑛𝑧𝑛 + 𝑏𝑛

 

Obsérvese  que el sistema (2.4) es de naturaleza lineal, por lo que puede  expresarse mediante 

notación matricial de la forma siguiente. 

𝑧′ = 𝐹(𝑧) = 𝐴𝑧 + 𝑏 

Donde: 

𝐴(𝑡) = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
⋯

⋮
𝑎𝑛𝑛

]   𝑦     𝑏 = [

𝑏1
𝑏2
⋮
𝑏𝑛

] 

Cuando 𝑏𝑖 = 0 para todo 𝑖 = 1,2,⋯ , 𝑛 el sistema se denomina homogéneo, caso contrario, se 

clasifica como no homogéneo. 

Teorema 2.2.  Sea 𝐴 ∈ ℝ𝑛𝑥𝑛, 𝑧0 ∈ ℝ
𝑛  𝑦 𝑡0 ∈  ℝ, entonces la única solución del PVI 

{
𝑧′ = 𝐴𝑧
𝑧(𝑡0) = 𝑧0

 

Esta dado por 

𝜑:ℝ → ℝ𝑛 

                          𝑡 → 𝜑 = 𝑒(𝑡−𝑡0)𝑧0 

Prueba. Ver (Benazic,2007, pp.46-47) 

Definición 2.6.  Sea  𝑈 ∈ ℝ𝑛 un conjunto abierto y  𝐹: 𝑈 → ℝ𝑛 una función asociada, a la 

ecuación diferencial 

𝑧′ = 𝐹(𝑧) 



27  

Un punto 𝑧∗ ∈ ℝ𝑛 se denomina punto crítico o singularidad si y sólo si, cumple que 𝐹(𝑧∗) =

0. 

A continuación, presentamos algunos resultados fundamentales relacionados con la  

linealización del sistema de ecuaciones diferenciales ordinarias no lineales. Para esto, sin pérdida 

de generalidad, consideraremos el siguiente sistema autónomo: 

{
𝑥1
′ = 𝐹1(𝑥1, 𝑥2)

𝑥2
′ = 𝐹2(𝑥1, 𝑥2)

                          ⋯  (𝜃∗) 

Con un punto crítico aislado (𝑥1
∗, 𝑥2

∗), es decir 

𝐹1(𝑥1
∗, 𝑥2

∗) = 0 

𝐹2(𝑥1
∗, 𝑥2

∗) = 0 

Si 𝐹1(𝑥1, 𝑥2)  y  𝐹2(𝑥1, 𝑥2) admiten su desarrollo mediante las series de Taylor de orden uno 

alrededor de 𝑧∗ = (𝑢∗, 𝑣∗), tenemos 

𝐹1(𝑥1, 𝑥2) = 𝐹1(𝑧
∗) +

𝜕𝐹1

𝜕𝑥
(𝑧∗)(𝑥1 − 𝑥1

∗) +
𝜕𝐹1

𝜕𝑦
(𝑧∗)(𝑥2 − 𝑥2

∗) + 𝑅1  

𝐹2(𝑥1, 𝑥2) = 𝐹2(𝑧
∗) +

𝜕𝐹2

𝜕𝑥
(𝑧∗)(𝑥1 − 𝑥1

∗) +
𝜕𝐹2

𝜕𝑦
(𝑧∗)(𝑥2 − 𝑥2

∗) + 𝑅2  

Luego tenemos 

𝐹1(𝑥1, 𝑥2) =
𝜕𝐹1

𝜕𝑥
(𝑧∗)(𝑥1 − 𝑥1

∗) +
𝜕𝐹1

𝜕𝑦
(𝑧∗)(𝑥2 − 𝑥2

∗) + 𝑅1  

𝐹2(𝑥1, 𝑥2) =
𝜕𝐹2

𝜕𝑥
(𝑧∗)(𝑥1 − 𝑥1

∗) +
𝜕𝐹2

𝜕𝑦
(𝑧∗)(𝑥2 − 𝑥2

∗) + 𝑅2  

Haciendo un cambio de variable  

𝑢′ = 𝑥1
′ = 𝐹1(𝑥1

∗, 𝑥2
∗) 

𝑣′ = 𝑥2
′ = 𝐹2(𝑥1

∗, 𝑥2
∗) 

Es decir 
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{
 
 

 
 𝑢′ = 𝑢

𝜕𝐹1
𝜕𝑥

(𝑧∗) + 𝑣
𝜕𝐹1
𝜕𝑦

(𝑧∗) + 𝑅1

𝑣′ = 𝑢
𝜕𝐹2
𝜕𝑥

(𝑧∗) + 𝑣
𝜕𝐹2
𝜕𝑦

(𝑧∗) + 𝑅2
 

              ⋯ (2.5) 

Observamos que las derivadas parciales están evaluadas en 𝑧∗ = (𝑢∗, 𝑣∗) por consiguiente son 

números 𝑅𝑖(𝑥1, 𝑥2) = 𝑅𝑖 ,    𝑖 = 1,2 denota el resto de términos en función de 𝑥1, 𝑥2. 

Expresando en su forma matricial, obtenemos lo siguiente 

[𝑢′
𝑣′
] =

[
 
 
 
 
𝜕𝐹1
𝜕𝑥

(𝑧∗)
𝜕𝐹1
𝜕𝑦

(𝑧∗)

𝜕𝐹2
𝜕𝑥

(𝑧∗)
𝜕𝐹2
𝜕𝑦

(𝑧∗)
]
 
 
 
 

[
𝑢
𝑣
] + [

𝑅1
𝑅2
]                ⋯ (2.6) 

Cuando consideramos |𝑢| 𝑦 |𝑣|  suficientemente pequeños o cercanos a cero, podemos 

despreciar los términos 𝑅𝑖 , 𝑝𝑎𝑟𝑎  𝑖 = 1,2 del sistema (2.6), así deducimos que el 

comportamiento cualitativo del sistema (2.6) cerca al punto crítico (𝑢∗, 𝑣∗) es similar al 

sistema lineal asociado 

[𝑢′
𝑣′
] = 𝐽 [

𝑢
𝑣
] =

[
 
 
 
 
𝜕𝐹1
𝜕𝑥

(𝑧∗)
𝜕𝐹1
𝜕𝑦

(𝑧∗)

𝜕𝐹2
𝜕𝑥

(𝑧∗)
𝜕𝐹2
𝜕𝑦

(𝑧∗)
]
 
 
 
 

[
𝑢
𝑣
]                                   ⋯ (2.7) 

Donde 

det(𝐽(𝑧∗)) = ||

𝜕𝐹1
𝜕𝑥

(𝑧∗)
𝜕𝐹1
𝜕𝑦

(𝑧∗)

𝜕𝐹2
𝜕𝑥

(𝑧∗)
𝜕𝐹2
𝜕𝑦

(𝑧∗)
|| ≠ 0                    ⋯ (2.8) 

Es la determinante de la matriz jacobiana, del sistema (2.7) evaluada en el punto critico 𝑧∗. 

Este proceso de transformar el sistema no lineal (2.6) a un sistema lineal (2.7) se le denomina 

linealización del sistema (𝜃∗) en el punto crítico 𝑧∗ = (𝑢∗, 𝑣∗). 

 



29  

 

Teorema 2.3 : Teorema de Linealización de Liapunov y Poincaré 

i) El punto crítico (𝑢∗, 𝑣∗) del sistema (𝜃∗) es asintóticamente estable si y sólo, todos los 

valores propios (autovalores) de la matriz Jacobiana J tienen parte real negativa. En otras 

palabras, esto implica que el punto crítico (0,0) del sistema linealizado (2.7) es asintóticamente 

estable. 

ii) Por otro lado, el punto crítico (𝑢∗, 𝑣∗)  es inestable si existe al menos un autovalor de  J 

cuya parte real sea positiva, lo que significa que el punto (0,0) del sistema linealizado es 

inestable. 

Cuando los autovalores de J son distintos entre sí y ninguno es cero, se puede clasificar de la 

siguiente manera: 

➢ Si 𝜆1 < 𝜆2 < 0, entonces (𝑢∗, 𝑣∗) es un nodo asintóticamente estable. 

➢ Si 𝜆1 > 𝜆2 > 0, el punto es un nodo inestable. 

➢ 𝜆1 < 0 < 𝜆2, se trata de un punto silla. 

➢ Si 𝜆1 es complejo con parte real negativa, entonces (𝑢∗, 𝑣∗) es un foco asintóticamente 

estable. 

➢ Si 𝜆1 es complejo con parte real positiva, entonces el punto crítico es un foco inestable. 

 

2.3.  Marco conceptual 

 

SISTEMA DE ECUACIONES DIFERENCIALES 

Formalmente, un sistema de 𝑛 Ecuaciones Diferenciales Ordinarias (EDO) de primer orden 

puede expresarse del siguiente modo: 

𝑥1
′ = 𝐹1(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

𝑥2
′ = 𝐹2(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

⋮ =  ⋮ 

 ( 3 ) 
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𝑥𝑛
′ = 𝐹𝑛(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

En donde 𝑡 es una variable independiente que denota al tiempo, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 son variables 

que dependen de 𝑡 que toman valores reales y 𝐹1, ⋯ , 𝐹𝑛 son funciones reales definidas en un 

subconjunto 𝐷 ⊂ ℝ𝑛𝑥ℝ. 

Si cada una de las funciones 𝐹𝑖 para 𝑖 = 1,2,⋯𝑛 ;  representa una estructura lineal respecto 

a las variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 el sistema se clasifica como lineal. En caso contrario se le 

denomina no lineal. 

Estabilidad de Sistemas Dinámicos: La estabilidad en un sistema dinámico se refiere a su 

capacidad para responder de manera controlada frente a pequeñas variaciones en las 

condiciones iniciales o en las variables que influyen en su comportamiento. En términos 

simples, un sistema se considera estable si, ante perturbaciones mínimas, su evolución 

temporal permanece cercana a la trayectoria original sin desviarse drásticamente. 

En el contexto de sistemas deterministas modelados mediante ecuaciones diferenciales, esta 

propiedad cobra especial relevancia. Tal como señala Murray (2003), la estabilidad de las 

soluciones de un sistema de ecuaciones diferenciales es reflejo directo de la estabilidad 

inherente al sistema dinámico que representan. 

Estabilidad de un punto de equilibrio:  

En el análisis de sistemas dinámicos, un punto de equilibrio se considera estable en el sentido 

de Lyapunov si cualquier trayectoria que se inicie lo suficientemente cerca de dicho punto 

permanece próxima a él conforme evoluciona el tiempo. En otras palabras, pequeñas 

desviaciones iniciales no provocan que el sistema se aleje significativamente del equilibrio. 

Por el contrario, si las trayectorias tienden a alejarse, se dice que el punto de equilibrio es 

inestable (Anzurez, Padilla & Cuevas, 2008). 
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Un punto de equilibrio de un sistema dinámico es estable en el sentido de Lyapunov si todas 

las soluciones que nacen en las cercanías del punto de equilibrio permanecen en dichas 

cercanías; de otra forma resulta inestable (Anzurez, Padilla, & Cuevas, 2008). 

El número básico de reproducción, 𝑹𝟎, es un concepto de suma importancia en modelos 

matemáticos de propagación de enfermedades dentro de una población. 

El cálculo de este número básico de reproducción 𝑅0 nos determinará precisar el impacto de 

la enfermedad. Asimismo, el parámetro 𝑅0 es un umbral para la estabilidad. Si 𝑅0 > 1, 

implica el número de individuos infectadas aumentará, 𝑅0 < 1 la enfermedad se extinguirá a 

través del tiempo (Van den Driessche y Watmough,2008). 

Modelo SIS. 

Algunas infecciones no confieren inmunidad duradera. Con tales infecciones, los individuos 

vuelven a ser susceptibles una vez que se han recuperado de la enfermedad. Por lo tanto, no 

existe una clase de recuperados (R) y la población está compuesta por los susceptibles (S ) y 

los infecciosos ( I)  solamente, es decir, T = S + I. 

El modelo correspondiente se conoce como el modelo SIS (susceptible/infectado/susceptible) 

con trasmisión vertical (Korobeinikov, 2002). 

En nuestra investigación, consideraremos el modelo SIS con dinámica Vital  cuyas 

ecuaciones diferenciales son: 

 

(1∗) {

𝑑𝑆

𝑑𝑡
= 𝜇𝑇 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆         ⋯ ( 1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼                     ⋯ ( 2 )

 

 

Donde 𝜇𝑇 tasa de nacimiento, 𝛼 𝑦 𝛽 tasa de muerte natural y tasa de transmisión, 𝛾 tasa de 

pérdida de inmunidad y 
1

𝛾
 periodo promedio de inmunidad temporal. Asumimos que el tamaño 

de la población T es constante. 
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Modelo SIS con tasa de incidencia no lineal. 

 

Se aplica para enfermedades en las que los individuos no desarrollan inmunidad 

permanente. En este tipo de infecciones, una vez que una persona se recupera, regresa al 

grupo de los susceptibles, repitiéndose así el ciclo de contagio. De esta manera, la 

progresión típica de la enfermedad sigue el esquema:  "𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 → 𝑖𝑛𝑓𝑒𝑐𝑡𝑎𝑑𝑜 →

𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒". 

En este modelo SIS consideramos la entrada de la tasa de nacimiento (𝜇𝑇) y la salida de la 

tasa de muerte natural, como se muestra en la figura 1. 

 

 

 

 

 

 

Fig. 1 Diagrama del modelo SIS con dinámica vital. 

Cuyo modelo de ecuaciones diferenciales está representado por: 

(1∗) {

𝑑𝑆

𝑑𝑡
= 𝜇𝑇 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆         ⋯ ( 1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼                     ⋯ ( 2 )

 

Donde: 

𝑺: 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑜𝑠 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒𝑠 

𝑰: 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑜𝑠 𝑖𝑛𝑓𝑒𝑐𝑡𝑎𝑑𝑜𝑠 𝑒𝑛 𝑒𝑙 𝑡𝑖𝑒𝑚𝑝𝑜 𝑡. 

𝝁𝑻:Tasa de nacimiento 

S I 

𝜷𝑺𝟐𝑰 𝝁𝑻 

𝜸 

𝜶 𝜶 
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𝜷: Tasa de trasmisión (número promedio de contactos adecuados para la infección de una 

persona por unidad de tiempo). 

𝜶: Tasa de muerte natural.                      𝜸: Tasa de pérdida de inmunidad. 

𝟏

𝜸
: Período promedio de inmunidad temporal 

Interpretación de la derivada 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒅𝑰

𝒅𝒕
  si 

𝑑𝐼

𝑑𝑡
 𝑠𝑖𝑔nifica Cambio promedio de la población de infectados (I) por unidad de 

tiempo (t). La expresión (𝛽𝑆2𝐼) representa a los susceptibles que pasaron a ser 

infectados a la cual se le resta la expresión (𝛾𝐼), que representa la población que 

después de ser infectada pasa a ser nuevamente susceptible, y adicionalmente se le 

resta la población infectada que muere por causas diferentes a la infección 𝛼𝐼. 

𝒅𝑺

𝒅𝒕
  s 
𝑑𝑆

𝑑𝑡
 𝑠𝑖gnifica Cambio promedio de la población de susceptibles (S) por unidad de tiempo 

(t). Donde 𝜇𝑇 representa la población susceptible que ingresa al modelo a la cual se le 

restan las personas que pasan a formar parte de la población de infectados (𝛽𝑆2𝐼). 

Asimismo, se le suma la proporción de la población infectada que pasa a ser susceptible 

(𝛾𝐼) y se le resta la población susceptible que muere por causas diferentes a la infección 

(𝛼𝑆). 
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CAPITULO III 

 

III. MARCO METODOLÓGICO 

 

3.1. Hipótesis central de investigación 

 

H1: El modelo matemático SIS no lineal con término de incidencia βS²I, que incorpora 

natalidad y mortalidad, permite su análisis cualitativo garantiza condiciones de existencia, 

unicidad, positividad y estabilidad de las soluciones. 

Hipótesis Específicas 

H1.1: El modelo SIS con incidencia no lineal, formulado mediante un sistema de ecuaciones 

diferenciales ordinarias, admite existencia y unicidad de soluciones para condiciones iniciales 

bien planteadas, lo que asegura que su comportamiento es matemáticamente bien definido. 

H1.2: Las soluciones del modelo se mantienen positivas y acotadas en el tiempo. 

H1.3: El modelo permite identificar puntos de equilibrio epidemiológicos que representan 

estados estables de desaparición o persistencia de la enfermedad. 

H1.4: Mediante la linealización del sistema en torno a los puntos de equilibrio, se puede 

determinar la estabilidad local. 

H1.5: El número básico de reproducción R₀ actúa como umbral crítico que condiciona si la 

enfermedad tiende a extinguirse (R₀ < 1) o a permanecer de forma endémica (R₀ > 1). 

 

3.2. Variables e indicadores de la investigación 

3.2.1. Definición conceptual 

 

Variable 1 (VD): Estabilidad de un modelo SIS no lineal 

La estabilidad de un sistema dinámico se refiere al comportamiento de sus soluciones ante 

pequeñas perturbaciones de las condiciones iniciales. En el contexto de modelos 
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epidemiológicos, implica que el sistema retorne o permanezca cerca de un punto de 

equilibrio, lo cual permite predecir la evolución de la enfermedad (Strogatz, 2018). 

Variable 2 (VI): Sistemas de ecuaciones diferenciales SIS no lineal 

La segunda variable independiente hace referencia a un sistema de Ecuaciones Diferenciales 

Ordinarias (EDO) de primer orden. Este sistema se compone de 𝑛 ecuaciones de la forma 

general: 

𝑥1
′ = 𝐹1(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

𝑥2
′ = 𝐹2(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

⋮ =  ⋮ 

𝑥𝑛
′ = 𝐹𝑛(𝑡, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

En este contexto 𝑡 es una variable independiente que denota al tiempo, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 son 

variables que dependen de 𝑡 que toman valores reales y 𝐹1, ⋯ , 𝐹𝑛 son funciones reales 

definidas en un subconjunto 𝐷 ⊂ ℝ𝑛 → ℝ. 

Un sistema se clasifica como lineal si cada función 𝐹𝑖 para 𝑖 = 1,2,⋯𝑛 ;  son lineales, 

respecto a las variables𝑥1, 𝑥2, ⋯ , 𝑥𝑛 , en caso contrario, se consideran no lineal. 

En epidemiologia el modelo SIS, representan el comportamiento dinámico de poblaciones 

susceptibles e infectadas, considerando que los individuos pueden reinfectarse tras 

recuperarse, lo que genera un ciclo constante de transmisión (Brauer y Castillo - Chavez, 

2012). 

3.2.2. Definición operacional 

 

Variable 1: Estabilidad del modelo SIS no Lineal  

Se analizará mediante el cálculo de los puntos de equilibrio del sistema SIS no lineal, el 

estudio de los autovalores del Jacobiano, y las condiciones en las que el número básico de 

reproducción 𝑅0 determina la permanencia o erradicación de la enfermedad.  

 

 ( 3 ) 
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Variable 2:  

Sistemas de Ecuaciones Diferenciales SIS no lineal 

Las ecuaciones diferenciales, estas están representadas por derivadas de una función. 

En tal sentido una ecuación diferencial, estará representada de la manera siguiente: 
𝑑𝑓

𝑑𝑡
= 𝐹(𝑡) 

Donde la ecuación de la izquierda (𝐹(𝑡)), nos representa como cambia 𝑓 a través del tiempo. 

Un sistema de ecuaciones diferenciales, está formada por varias ecuaciones diferenciales que 

representa la dinámica de funciones que se relacionan entre sí. 

Por consiguiente, para nuestro trabajo de investigación la representación matemática de 

nuestro modelo, que contempla una población de Susceptibles (S), una población de 

Infectados (I) , los cuales están relacionados entre sí, el modelo se expresa de la manera 

siguiente: 

{

𝑑𝑆

𝑑𝑡
= 𝜇𝑇 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆         

𝑑𝐼

𝑑𝑡
= 𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼                     

 

y se evaluará su estructura mediante análisis cualitativo: existencia, unicidad, positividad, 

acotamiento y dinámica generada por los parámetros del modelo. 

 

Indicadores 

Variable Dimensión Indicador 

Estabilidad del 

modelo SIS no 

lineal 

Análisis de equilibrio puntos de equilibrio 

Estabilidad local Autovalores de la matriz Jacobiana 

Número básico de 

reproducción 𝑅0 
Determinación del valor crítico de 𝑅0 como umbral  

 

Sistema de 

ecuaciones SIS no 

lineal 

Existencia y unicidad Verificación del teorema de existencia y unicidad. 

Positividad y acotamiento 
Evaluar que las soluciones se mantienen en el primer 

cuadrante  

Función de incidencia no 

lineal 
Incidencia del término 𝛽𝑆2𝐼 en la reproducción de la 

tasa de contagio 
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3.3. Métodos de la investigación 

 

De acuerdo a Baena (2014) la investigación es pura (básica) “es el estudio de un problema, 

destinado exclusivamente a la búsqueda de conocimiento” (p.11). Por consiguiente, nuestra 

investigación sobre un modelo SIS no lineal, pues busca ampliar nuevos conocimientos, para 

incrementar los saberes científicos.  

En la presente investigación tendremos en consideración el planteamiento realizado por  

Gao, Wang, y Liu (2019), Pino (2017) y Bassanezi y Ferreira (1998) teniendo en cuenta las 

modificaciones realizadas en el sistema trabajado por ellos, para obtener la estabilidad del 

sistema planteado. Para la obtención de los resultados de nuestros objetivos, recurriremos al uso 

de textos avanzados de consulta los cuales se mencionan en la bibliografía, así como también 

artículos relacionados a los temas en estudio, los cuales son citados en la referencia bibliográfica. 

3.4. Diseño o esquema de la investigación 

 

La investigación sigue un diseño no experimental. Se estudia un modelo no lineal de la forma 

(1∗), lo que se quiere es el análisis en su comportamiento bajo condiciones previamente 

establecidas gobernado por un sistema de ecuaciones diferenciales ordinarias.  

 

3.5. Población y muestra 

 

Población: En el contexto de una investigación matemática, la población corresponde al conjunto 

de todos los posibles modelos epidemiológicos SIS no lineales. 

Muestra: Se restringe al modelo específico con incidencia βS²I, que se analiza en profundidad 

debido a su pertinencia en estudios epidemiológicos recientes. 

3.6. Actividades del proceso investigativo 

 

Las actividades desarrolladas incluyen: revisión bibliográfica sobre modelos SIS y estabilidad, 

formulación del sistema de ecuaciones, análisis de puntos críticos, linealización, estudio de 

estabilidad local y análisis de resultados. 
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3.7. Técnicas e instrumentos de investigación 

 

➢ Las técnicas empleadas comprenden análisis cualitativo de sistemas dinámicos, derivación y 

solución de sistemas de ecuaciones diferenciales. 

➢ Los instrumentos utilizados incluyen artículos científicos de alto impacto, como bibliografía 

especialidad en la investigación. 

3.8. Procedimiento para la recolección de datos 

 

Dado que esta investigación es teórica, la recolección de datos se centra en la obtención de 

información bibliográfica y en la generación de datos mediante simulaciones numéricas. Las 

fuentes bibliográficas se seleccionaron siguiendo criterios de actualidad, relevancia y 

rigurosidad científica. 

3.9. Técnicas de procesamiento y análisis de los datos. 

 

No hubo recolección de datos ya que la investigación es abstracta y solo se realizó el análisis 

cualitativo permitió validar la hipótesis y extraer conclusiones sobre la estabilidad del sistema. 
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CAPITULO IV 

 

 

 

IV. RESULTADOS Y DISCUSIÓN 

En este capítulo nos centraremos en el análisis cualitativo que garantiza condiciones de 

existencia, unicidad, positividad y estabilidad de las soluciones, facilitando la 

identificación de escenarios de erradicación o persistencia de la enfermedad en la 

población. 

4.1. Análisis de los resultados 

 

Existencia y Unicidad 

Ahora demostraremos la existencia y unicidad de nuestro modelo matemático SIS no lineal 

(1∗) {

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆         ⋯ ( 1)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼                     ⋯ ( 2 )

 

Donde 𝜇𝑇 = 𝐴. 

Aplicando el Lema 2.1 

Sea 𝐹:ℝ+
2 → ℝ2, 𝐹(𝑋) = (𝐹1(𝑥), 𝐹2(𝑥)), donde 𝑆 𝑦 𝐼 son continuas positivas y además 

𝐹1(𝑥) 𝑦 𝐹2(𝑥) son continuas. 

A continuación, vamos analizar las derivadas parciales de cada función 

Sea 𝐹1(𝑆, 𝐼) = 𝐴 − 𝛽𝑆
2𝐼 + 𝛾𝐼 − 𝛼𝑆         𝑦  𝐹2(𝑆, 𝐼) = 𝛽𝑆

2𝐼 − 𝛾𝐼 − 𝛼𝐼  

𝜕𝐹1
𝜕𝑆

= −2𝛽𝑆𝐼 − 𝛼      𝑦        
𝜕𝐹1
𝜕𝐼

= −𝛽𝑆2 + 𝛾   

Por consiguiente, 
𝜕𝐹1

𝜕𝑆
   𝑦    

𝜕𝐹1

𝜕𝐼
   son continuas. 

𝐹2(𝑆, 𝐼) = 𝛽𝑆
2𝐼 − 𝛾𝐼 − 𝛼𝐼  
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𝜕𝐹2
𝜕𝑆

= 2𝛽𝑆𝐼      𝑦        
𝜕𝐹2
𝜕𝐼

= 𝛽𝑆2 − (𝛾 + 𝛼)   

entonces, 
𝜕𝐹2

𝜕𝑆
   𝑦    

𝜕𝐹2

𝜕𝐼
   son continuas. 

Por ende, se concluye que 𝐹 cumple con la condición de Lipschitz de manera local en el 

dominio ℝ+
2 . 

A continuación, procederemos a demostrar que, bajo ciertas condiciones, el sistema admite 

una solución única para un problema de valor inicial. 

Del teorema 2.1 𝐹:ℝ+
2 → ℝ2 localmente Lipschitz continua en cada componente 𝑗 = 1,2 y 

además cumple 𝐹𝑗(𝑋) ≥ 0 para todo 𝑥 ∈ ℝ+,   
2 𝑥𝑗= 0 entonces, para cualquier 𝑥0 ∈ ℝ+,   

2 existe 

una única solución del sistema 𝑥′ = 𝐹(𝑥) con 𝑥(0) = 𝑥0, definida en intervalo (0, 𝑎] con 𝑎 ∈

(0,+∞]. En caso de que la solución no pueda extenderse indefinidamente, es decir, Si 𝑏 <

+∞;  entonces 

𝑠𝑢𝑝⏟
0≤𝑡≤𝑎

∑𝑥𝑖(𝑡) = ∞

𝑛

𝑖=1

 

Comprobación del cumplimiento de las hipótesis del teorema 2.1 

➢ Sea 𝐹1(𝑆, 𝐼) = 𝐴 − 𝛽𝑆
2𝐼 + 𝛾𝐼 − 𝛼𝑆 , 𝐴 =  𝜇𝑇         

Donde 𝑆 = 0, 𝐼 ≥ 0 entonces 

𝐹1(𝑆, 𝐼) = 𝐴 + 𝛾𝐼 ≥ 0 

➢ Sea   𝐹2(𝑆, 𝐼) = 𝛽𝑆
2𝐼 − 𝛾𝐼 − 𝛼𝐼 

Donde 𝑆 ≥ 0, 𝐼 = 0 entonces 

𝐹2(𝑆, 𝐼) = 0 ≥ 0 

∴ 𝐹𝑗(𝑥) ≥ 0 para cualquier 𝑥 ∈ ℝ+.  
2  

Si tenemos que: 
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𝑎 < ∞ → 𝑠𝑢𝑝⏟
0≤𝑡≤𝑎

(𝑆 + 𝐼) = ∞ 

Supongamos, 𝑎 < ∞ y sea 𝑇 = 𝑆 + 𝐼 

𝑇′ = 𝐴 − 𝛼(𝑆 + 𝐼) = 𝐴 − 𝛼𝑇 

Entonces  

𝑇′ = 𝐴 − 𝛼𝑇 

Integrando 

∫ 𝑇′𝑑𝑡 = ∫ 𝐴𝑑𝑡 − ∫ 𝛼𝑇(𝑆)𝑑𝑆
𝑡

0

𝑡

0

𝑡

0

 

𝑇(𝑡) = 𝑇(0) + 𝐴𝑡 − ∫ 𝛼𝑇(𝑆)𝑑𝑆
𝑡

0

 

Por el Lema de Gronwall obtenemos: 

𝑇(𝑡) ≤ (𝐴𝑡 + 𝑇(0))𝑒−𝛼𝑡 =
𝐴𝑡

𝑒𝛼𝑡
+
𝑇(0)

𝑒𝛼𝑡
 

Luego, 

𝑇(𝑡) ≤
𝐴𝑡

𝑒𝛼𝑡
+
𝑇(0)

𝑒𝛼𝑡
 

De esta desigualdad se puede deducir, 

(a) 𝑒𝛼𝑡 ≥ 1 →
𝑇(0)

𝑒𝛼𝑡
≤ 𝑇(0) 

(b) 
𝐴𝑡

𝑒𝛼𝑡
→ 0 cuando 𝑡 → +∞ 

Es decir, 𝑇(𝑡) ≤ (𝐴𝑡 + 𝑇(0))𝑒−𝛼𝑡   ∀𝑡 ∈ [0, 𝑎) 

Sea 𝑓(𝑡) = 𝐴𝑡 + 𝑇(0) ≤ 𝐾   ∀𝑡 ∈ [0, 𝑎)  

Como 𝑎 < +∞ → 𝑓(𝑡) ≤ 𝐾  ∀𝑡 ∈ [0, 𝑎)   
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Luego, 𝑇(𝑡) ≤ 𝐾 para algún 𝐾 > 0 

𝑆𝑢𝑝(𝑆 + 𝐼) ≤ 𝐾 ∀𝑡 ∈ [0, 𝑎)    

Luego, 𝑆𝑢𝑝(𝑆 + 𝐼) < +∞     (⟹⟸) 

∴ 𝑎 = ∞ 

Por consiguiente, se concluye que, el sistema (1∗) tiene solución única, y además están 

definidas en [0, +∞). 

Positividad y acotamiento del modelo 

Teorema 4.1:  Dado el conjunto 

Γ = {(𝑆(𝑡), 𝐼(𝑡)) ∈ ℝ+
2 ∪ {0}: 𝑆(𝑡) + 𝐼(𝑡) ≤

𝐴

𝛼
, 𝑡 ≥ 0} 

Entonces, dicho conjunto constituye una región positivamente invariante para el sistema 

(1∗). 

Prueba. 

Partimos del Sistema  (1∗)  y definimos la función auxiliar 𝑇 = 𝑆 + 𝐼 , que representa la 

población total del modelo. Al sumar las dos ecuaciones que componen el sistema, se 

obtiene: 

𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
= 𝐴 − 𝛼𝑆 − 𝛼𝐼 

𝑑𝑆

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
= 𝐴 − 𝛼(𝑆 + 𝐼) 

𝑑𝑇

𝑑𝑡
≤ 𝐴 − 𝛼𝑇 →

𝑑𝑇

𝑑𝑡
+ 𝛼𝑇 ≤ 𝐴 

𝑑

𝑑𝑡
[𝑇𝑒𝛼𝑡] ≤ 𝐴𝑒𝛼𝑡 
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∫
𝑑

𝑑𝑡
[𝑇𝑒𝛼𝑡]𝑑𝑡 ≤ ∫ 𝐴𝑒𝛼𝑡𝑑𝑡

𝑡

0

𝑡

0

 

𝑇(𝑡)𝑒𝛼𝑡 − 𝑇(0) ≤
𝐴

𝛼
𝑒𝛼𝑡 −

𝐴

𝛼
 

𝑇(𝑡) ≤
𝐴

𝛼
+ [𝑇(0) −

𝐴

𝛼
]𝑒−𝛼𝑡 

𝑇(𝑡) ≤
𝐴

𝛼
      𝑐𝑢𝑎𝑛𝑑𝑜 𝑡 → +∞ 

Análisis Cualitativo del modelo Matemático SIS 

Realizaremos el análisis cualitativo del modelo matemático SIS siendo un método que nos 

permite saber cómo es su comportamiento a través del tiempo gobernado por la EDO de tipo 

no lineal, para garantizar su estabilidad de dicho modelo, hallaremos en primer lugar sus 

puntos críticos. 

Puntos de Equilibrio (Puntos críticos) 

Dado el sistema (1∗) de EDO, los puntos críticos lo hallaremos igualando a cero cada 

ecuación del sistema, es decir 

𝐴 − 𝛽𝑆2𝐼 + 𝛾𝐼 − 𝛼𝑆 = 0                ⋯ ( 1)

𝛽𝑆2𝐼 − 𝛾𝐼 − 𝛼𝐼            = 0              ⋯ ( 2 )
 

De la ecuación (2): 

𝐼(𝛽𝑆2 − 𝛾 − 𝛼) = 0             

➢ Para 𝐼 = 0 → 𝑆 ≠ √
𝛼+𝛾

𝛽
 

Reemplazando en (1) 

𝐴 − 𝛼𝑆 = 0 → 𝑆 =
𝐴

𝛼
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Por lo tanto, se concluye que el sistema (1∗) admite un punto de equilibrio libre de 

enfermedad, el cual se caracteriza por la ausencia total de individuos infectados en la 

población. 

𝐸1
∗ = (𝑆0

∗, 𝐼0
∗) = (

𝐴

𝛼
, 0) 

➢ Para: 𝐼 ≠ 0 → 𝑆2 =
𝛼+𝛾

𝛽
  𝑜 𝑆 = √

𝛼+𝛾

𝛽
             ⋯  (∗1) 

Reemplazando (∗1) en (1) se obtiene 

𝐼 =
𝐴

𝛼
− √

𝛼 + 𝛾

𝛽
  

Por tanto, el sistema (1∗) tiene un punto de equilibrio endémico 

𝐸2
∗ = (𝑆1

∗, 𝐼1
∗) = (√

𝛼 + 𝛾

𝛽
 ,

𝐴

𝛼
− √

𝛼 + 𝛾

𝛽
 ) 

El punto de equilibrio endémico existe si cumple que  𝐼1
∗ > 0 

𝐴

𝛼
− √

𝛼 + 𝛾

𝛽
 > 0 → 𝐴 > 𝛼√

𝛼 + 𝛾

𝛽
  

→           
1

𝛼
√

𝛽

𝛼 + 𝛾
𝐴(0)

⏟        
> 1

𝑅0

 

Por consiguiente, el punto de equilibrio endémico existe, donde 𝑅0 es el número básico de 

reproducción. 

Existencia de los puntos de equilibrio 

Debido que se va modelar poblaciones, es fundamental asegurar que los puntos de 

equilibrio del modelo epidemiológico SIS sean biológicamente viables, lo que implica 

garantizar la no negatividad. 
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𝐸1
∗ = (𝑆0

∗, 𝐼0
∗) = (

𝐴

𝛼
, 0)  (𝑡𝑟𝑖𝑣𝑖𝑎𝑙) 

𝐸2
∗ = (𝑆1

∗, 𝐼1
∗) = (√

𝛼 + 𝛾

𝛽
 ,

𝐴

𝛼
− √

𝛼 + 𝛾

𝛽
 ) 

La presencia del Punto Libre de Infección 𝐸1
∗; resulta evidente, ya que se obtiene al considerar 

valores estrictamente positivos y diferentes de cero para las variables del modelo. Por otro 

lado, la existencia del Punto de equilibrio endémico 𝐸2
∗ está sujeta a una condición clave 

desde el punto de vista epidemiológico; es decir el número básico de reproducción 𝑅0 debe 

ser mayor que 1. 

Linealización del Sistema 

Dado que nos encontramos frente a un sistema de ecuaciones no lineales, resulta 

conveniente aplicar el proceso de linealización con el propósito de facilitar su análisis 

cualitativo. Para ello, se procederá al cálculo de la matriz Jacobiana asociada al sistema. 

𝐽(𝑆0
∗, 𝐼0

∗) = [

𝜕𝐹1
𝜕𝑆

𝜕𝐹1
𝜕𝐼

𝜕𝐹2
𝜕𝑆

𝜕𝐹2
𝜕𝐼

] 

𝐽(𝑆0
∗, 𝐼0

∗) = [
−2𝛽𝑆𝐼 − 𝛼 −𝛽𝑆2 + 𝛾

2𝛽𝑆𝐼 𝛽𝑆2 − (𝛾 + 𝛼)
] 

a) Punto libre de infección 

El denominado punto libre de infección, representado como 𝐸1
∗ , corresponde a una situación 

en la que, en un determinado momento, la población ya no presenta individuos infectados, 

permaneciendo únicamente los susceptibles.  

Este punto de equilibrio resulta clave para comprender el comportamiento del sistema a lo 

largo del tiempo. 
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𝐽1 (
𝐴

𝛼
, 0) = [

−𝛼 −𝛽𝑆2 + 𝛾

0 𝛽𝑆2 − (𝛾 + 𝛼)
] 

Donde, 

det(𝐽1 − 𝜆𝐼) = 0 

det(𝐽1 − 𝜆𝐼) = |
−𝛼 − 𝜆 −𝛽𝑆2 + 𝛾

0 𝛽𝑆2 − (𝛾 + 𝛼) − 𝜆
| = 0 

Que tiene los siguientes valores propios 

𝜆1 = −𝛼 ,         𝜆2 = 𝛽𝑆
2 − (𝛾 + 𝛼) 

Dado que 𝛼 > 0, resultando que 𝜆1 < 0, ahora analizaremos 𝜆2 

Caso 1:  

𝜆2 = 𝛽𝑆
2 − (𝛾 + 𝛼) > 0 →  

𝛽𝑆2

𝛾 + 𝛼⏟  
𝑅0

> 1 

Si 𝜆1 < 0  𝑦 𝜆2 > 0 entonces 𝑬𝟏
∗  es un punto inestable. 

Caso 2: 

𝜆2 = 𝛽𝑆
2 − (𝛾 + 𝛼) < 0 →  

𝛽𝑆2

𝛾 + 𝛼⏟  
𝑅0

< 1 

 Entonces 𝐸1
∗ es un punto estable. 

Por lo tanto, para que un punto de equilibrio de extinción de enfermedades (
𝐴

𝛼
, 0) sea 

estable, debe cumplirse que 

𝑆2 <
𝛼 + 𝛾

𝛽
↔ 𝑆 < √

𝛼 + 𝛾

𝛽
  

O equivalentemente  
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(
𝐴

𝛼
) < √

𝛼 + 𝛾

𝛽
  

b) Punto endémico 𝑬𝟐
∗  

La matriz jacobiana evaluada en el punto endémico 𝐸2
∗ toma la forma siguiente: 

𝐽2(𝑆
∗, 𝐼∗) = [

−2𝛽𝑆𝐼 − 𝛼 −𝛽𝑆2 + 𝛾

2𝛽𝑆𝐼 𝛽𝑆2 − (𝛾 + 𝛼)
],            𝑆2 =

𝛼 + 𝛾

𝛽
 

𝐽2(𝑆
∗, 𝐼∗) = [

−2𝛽𝑆𝐼 − 𝛼 −𝛽𝑆2 + 𝛾
2𝛽𝑆𝐼 0

] 

Y los valores propios de la matriz 𝐽2 satisfacen 

𝜆1 + 𝜆2 = −2𝛽𝑆𝐼 − 𝛼 < 0, 

𝜆1. 𝜆2 = (𝛽𝑆
2 − 𝛾)(2𝛽𝑆𝐼) = 2𝛼𝛽𝑆𝐼 > 0 

Esto implica que 𝜆1 𝑦 𝜆2 tienen partes reales negativas. 

Por consiguiente, 

𝛽𝑆2

𝛾 + 𝛼⏟  
𝑅0

> 1 

En consecuencia, se concluye que el punto 𝑬𝟐
∗  presenta estabilidad. 

Una vez culminado el análisis cualitativo del modelo SIS no lineal, en el cual se identificaron 

los puntos de equilibrio y se establecieron las condiciones que garantizan su estabilidad local, 

se procede a exponer el siguiente teorema. Este resultado permitirá completar el estudio 

cualitativo, orientándose hacia la identificación de un escenario epidemiológico en el que la  

Infección desaparezca de la población. 
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La conclusión alcanzada en la demostración de este teorema respalda dicha situación y ofrece 

un marco teórico sólido para comprender la erradicación de la enfermedad. 

Teorema 4.2: Definir 

𝑅0 =
𝛽𝑆2

𝛾 + 𝛼
 

Entonces, para el Sistema (1∗), tenemos 

a) Si 𝑅0 < 1, tiene un único punto de equilibrio estable de extinción de enfermedades 

𝐸1
∗, que implica la extinción de enfermedades. 

b) Si 𝑅0 > 1, tiene un equilibrio positivo estable 𝐸2
∗, lo que indica la permanencia de la 

enfermedad. 

 

4.2. Discusión 

 

A continuación, se realiza una comparación de nuestros resultados con diferentes 

investigaciones previas, modeladas sistema SIS no lineal. 

Con respecto a investigaciones nacionales, Salazar (2019) en su investigación trabajo con una 

incidencia no lineal y examinó cómo la variabilidad temporal en la tasa de contagio afecta la 

estabilidad de la enfermedad. Utilizó el jacobiano para analizar los autovalores, determinando 

que pequeños cambios en dichos parámetros pueden modificar el comportamiento del 

equilibrio libre de infección. Asimismo, en nuestro trabajo también tiene coincidencia ya que 

se aplica una incidencia no lineal (βS²I), estudiando la estabilidad en los puntos críticos 

utilizando la linealización mediante el jacobiano, lo que representa un mejor planteamiento 

para identificar el comportamiento de contagio en contextos de alta densidad o en espacios 

cerrados.  
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Por otro lado, Pino (2017) se centró en modelos SI con retardo para enfermedades de 

transmisión sexual. Este modelo tiene una similitud en su enfoque cualitativo. No obstante, 

nuestra investigación incorpora una incidencia no lineal (βS²I), lo que representa una evolución 

en la formulación matemática al capturar mejor el comportamiento de contagio en contextos de 

alta densidad de susceptibles. 

Con respecto a lo internacional, Dos Santos y Cordero (2020) en su estudio aplicó un modelo 

SIS clásico para modelar la malaria en dos ciudades brasileñas. Utilizo un sistema es lineal, e 

identifico los puntos de equilibro y la estimación de los parámetros a través del análisis 

cualitativo, los cuales se asemejan a nuestra metodología. Sin embargo, nuestro modelo se 

diferencia al capturar la dinámica no lineal del contagio, permitiendo detectar umbrales de 

infección más sensibles. 

Asimismo, Aguadero (2020), trabajó con  un modelo SIS más general que incluye natalidad, 

mortalidad y parámetros adicionales. En su modelo se centra en buscar el número de 

reproducción básico y el análisis de estabilidad, semejantes a nuestros propósitos de este 

estudio. A pesar que nuestro modelo es simple en su estructura, ofrece un enfoque potente y 

manejable para evaluar la estabilidad a través de la linealización de un sistema no lineal. 

Por otro lado, Alpízar (2016) trabajo con un modelo SIS discreto con medidas de control, 

incorporando probabilidad de infección. Si bien este estudio se centra de manera práctica en 

salud pública, nuestro trabajo se centra en el análisis cualitativo del modelo SIS no lineal y ver 

de manera más preciso de las trayectorias del sistema y su comportamiento en el tiempo, lo que 

complementa el análisis de políticas sanitarias desde un enfoque dinámico. 

Por su parte Gao, Wang y Liu (2019) destacan en su investigación sobre el uso de modelos 

estocásticos con tasas de incidencia no lineales. En este sentido, nuestra investigación puede 

considerarse una base determinista que podría extenderse en futuras investigaciones hacia 
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modelos estocásticos, manteniendo la estructura de incidencia no lineal. Además, Francois, 

Dronnier y André (2020) abordaron modelos SIS de dimensión infinita, lo que representa una 

generalización compleja. En cambio, nuestro modelo se sitúa como una similitud o 

aproximación intermedia entre la simplicidad del modelo clásico y la sofisticación de modelos 

más elaborados, siendo útil para aplicaciones directas en salud pública. 

por consiguiente, el presente trabajo ofrece una contribución clara al campo del modelamiento 

epidemiológico al considerar un término de incidencia cuadrático que mejora la comprensión 

de la dinámica de enfermedades infecciosas. El análisis cualitativo de este modelo puede ser 

particularmente valioso en contextos de alta transmisión, donde los efectos de la no linealidad 

son más pronunciados. 

 

 

V. CONCLUSIONES Y RECOMENDACIONES 

 

 

5.1. Conclusiones 

 

• Se demostró que el modelo está bien definido matemáticamente, ya que se verificó 

condiciones de continuidad y local Lipschitzianidad, el sistema presenta soluciones únicas 

para condiciones iniciales positivas y que las trayectorias a lo largo del tiempo se 

comportan de manera consistentes y predecibles. 

• Se garantizó la coherencia biológica del modelo, sino que también asegura que la dinámica 

no diverge, ya que se demostró que las soluciones de las poblaciones susceptibles e 

infectadas permanecen siempre positivas y limitadas dentro de una región positivamente 

invariante. 
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• Se determinaron dos puntos de equilibrio, el primer punto de equilibrio correspondiente a 

libre de enfermedad, donde no hay infectados a través del tiempo y el segundo 

correspondiente al equilibrio endémico, donde la enfermedad persiste en la población 

• Se determino el número de reproducción básica 𝑅0 =
𝛽𝑆2

𝛾+𝛼
  , el cual juega un papel muy 

importante en este análisis, ya que actúa como un umbral que determina el estado de la 

enfermedad. Si  𝑅0 < 1, la enfermedad tiende a desaparecer. 

Si  𝑅0 > 1, la enfermedad se establece y se mantiene en la población. 

• Se determino la estabilidad local del sistema, mediante el análisis de la matriz jacobiana 

evaluada en cada punto de equilibrio. Se determino que si  𝑅0 < 1, el equilibrio libre de 

enfermedad es estable, caso contrario si  𝑅0 > 1 se concluye un equilibrio endémico.  

Esto significa que hay un cambio claro en el comportamiento del sistema dependiendo del 

valor de  𝑅0, lo cual es crucial para entender cómo controlar o mitigar la propagación de la 

enfermedad. 

• A diferencia del modelo SIS clásico, este trabajo introduce una no linealidad en la tasa de 

transmisión, específicamente cuadrática en la densidad de susceptibles. Esta elección 

permite modelar situaciones donde el riesgo de contagio aumenta más rápidamente en 

entornos con alta concentración de personas susceptibles. Este tipo de estructura puede ser 

especialmente útil para estudiar brotes en espacios cerrados o eventos multitudinarios. 

5.2. Recomendaciones 

 

•  Este trabajo solo se centró en el análisis cualitativo del modelo, se recomienda para futuras 

investigaciones aplicar el modelo a casos reales prácticos. Esto permitiría ajustar los 

parámetros con mayor precisión y generar predicciones más útiles para la toma de decisiones 

sanitarias. 
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• Se alienta a los profesionales de la salud pública a considerar los umbrales del modelo para 

definir estrategias como vacunación, aislamiento o campañas informativas, según se supere 

o no el valor crítico de R₀. 

• Impulsar líneas de investigación orientadas al análisis y simulación de estos sistemas, 

promoviendo el diálogo entre la matemática y la salud pública.  
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